quinta-feira, 17 de setembro de 2015

Gênio Precoce
O matemático Evariste Galois é um dos destaques dessa ciência por seu conhecimento elevado ainda na adolescência, quando muita gente não quer nem chegar perto dos números. Ele chegou até a questionar os professores e abandonar as aulas para estudar por livros de gênios já consagrados, pois se considerava um nível acima daquilo tudo.
Nessa época, ele inventou um ramo totalmente novo da matemática, a “teoria dos grupos”, na qual constava a resposta sobre como resolver uma equação do 5° grau ou mais sem utilizar a transformação dos radicais, mas buscando as raízes da fórmula.

O poder do “4”

Essa aqui é mérito nacional e bastante conhecido de quem já gostava de matemática na infância. Escrito pelo brasileiro Júlio César de Melo e Sousa, sob o pseudônimo Malba Tahan, o livro “O Homem que Calculava” trazia, entre outras teorias, a dos “quatro quatros”.
Segundo ela, é possível formar qualquer número inteiro de 0 a 100 utilizando quatro numerais 4 e sinais de operações matemáticas, como soma, divisão, exponenciação ou fatorial. Deseja obter um “3”? É só fazer a seguinte operação: (4+4+4)/4. Fãs de Tahan já afirmam conseguir obter qualquer número até a casa dos 100.000. Será que você consegue?

quarta-feira, 9 de setembro de 2015

A Fórmula é de Bhaskara?


Bhaskara (1114 – 1185)
Bhaskara nasceu em 1114 na cidade de Vijayapura, na Índia. Também era conhecido como Bhaskaracharya (Bhaskara, o professor). Ele não deve ser confundido com outro matemático indiano que tinha o mesmo nome Bhaskara e que viveu no século VII.
Naquela época, na Índia, os ensinamentos eram passados de pai para filho. Havia muitas famílias de excelentes matemáticos. O pai de Bhaskaracharya era astrônomo e, como era de se esperar, ensinou-lhe Matemática e Astronomia.
Bhaskaracharya tornou-se chefe do observatório astronômico de Ujjain – na época, o centro mais importante de Matemática, além de ser uma excelente escola de matemática astronômica criada pelos grandes matemáticos que ali trabalharam.
Bhaskaracharya foi um dos mais importantes matemáticos do século XII, graças aos seus avanços em álgebra, no estudo de equações e na compreensão do sistema numérico – avanços esses que os matemáticos europeus levariam séculos ainda para atingir. Suas coleções mais conhecidas são: Lilavati (A Bela) que trata de aritmética; Bijaganita(Extração de Raízes) que discorre sobre álgebra e contêm vários problemas sobre equações lineares e quadráticas com soluções feitas em prosa, progressões aritméticas e geométricas, radicais, ternas pitagóricas entre outros tópicos;Siddhantasiromani, dividido em duas partes: uma sobre matemática astronômica e outra sobre a esfera.
Em suas obras podemos perceber que Bhaskara trabalhou com equações de segundo grau e formulou uma expressão que envolvia raízes quadradas:
Ele sabia que a equação x2 = 9 tem duas raízes, entretanto não parece ser verdade que tivesse encontrado a conhecida fórmula da resolução de equação do 2º grau ax2 + bx + c = 0 com a ¹ 0:
 .

Na realidade até o fim do século XVI não se utilizava uma fórmula para obter as raízes de uma equação do segundo grau, simplesmente porque não existia a notação usual de hoje. A representação feita por letras, indicando os coeficientes, começou a ser desenvolvida a partir de François Viète.
O nome de Bhaskara relacionado a esta fórmula aparentemente só ocorre no Brasil. Não encontramos esta referência na literatura internacional. A nomenclatura “fórmula de Bhaskara” não é adequada, pois problemas que recaem numa equação do segundo grau já apareciam quase quatro mil anos antes, em textos escritos pelos babilônios, nas tábuas cuneiformes. Nesses textos o que se tinha era uma receita, escrita em prosa, sem uso de símbolos matemáticos, que ensinava como proceder para determinar as raízes em exemplos concretos, quase sempre ligados a relações geométricas.
Nem por isso devemos diminuir a fama de Bhaskara. Podemos até ressaltá-la ao indicar duas relações e que foram apresentadas pela primeira vez por ele:
sen(a + b) = sena.cosb + senb.cosa
sen(a - b) = sena.cosb - senb.cosa
Bhaskara obteve grande reconhecimento pelas suas importantes contribuições para a Matemática. Em 1207, uma instituição educacional foi criada para estudar o seu trabalho. Em uma inscrição medieval em um templo indiano podemos ler:
Triumphant is the illustrious Bhaskaracharya whose feats are revered by both the wise and the learned. A poet endowed with fame and religious merit, he is like the crest on a peacock. [1]
Bhaskara morreu aos 71 anos de idade em Ujjain, Índia, em 1185.

Raciocínio Lógico / Tabela Verdade

Visando facilitar a vida e a aprendizagem dos estudantes de Matemática, disponibilizamos aqui 02 vídeos aulas bem interessantes e explicativas sobre Lógica Matemática / Construção de Tabela Verdade. Com certeza irá lhe auxiliar na memorização de algumas regrinhas básicas.

Clique nos links abaixo:


https://www.youtube.com/watch?v=tyLgDVuMt1I&noredirect=1

https://www.youtube.com/watch?v=V9XgIGKVMm0


JOGOS MATEMÁTICOS TRABALHANDO COM PROPORCIONALIDADE

 

A revista Nova Escola é sempre uma ótima fonte de pesquisa para os professores, bastante atual, cheia de dicas para trabalhar o novo e sair da rotina. Neste artigo você encontra uma boa dica de trabalhar proporcionalidade com seus alunos, através de uma maneira super didática e prática para ensino fundamental II.

Vamos conferir?:

Quebra-cabeça da proporcionalidade



Publicado por 
Objetivo(s) 
Encontrar a constante de proporcionalidade em um problema.
Conteúdo(s) 
  • Proporcionalidade
Ano(s) 
Tempo estimado 
5 aulas
Material necessário 
  • papel
  • régua
  • tesoura
  • Quebra-cabeça (conforme o modelo abaixo)
quebra-cabeça
Desenvolvimento 
1ª etapa 
Divida a turma em grupos, entregue o quebra-cabeça e proponha que fabriquem outra figura nos mesmos moldes, porém maior: o lado que mede 4 centímetros deve medir 7.

2ª etapa 
É provável que, ao buscar a solução do problema, muitos alunos optem por adicionar 3 centímetros a cada um dos lados da figura, apoiados na informação de que entre 4 e 7 foi necessário somar 3. Porém, quando tentam encaixar as peças novamente, não conseguem. Por isso, oriente para que refaçam a atividade. Eles devem reorganizar as peças, conferir as medidas e questionar os colegas quanto à confecção do trabalho. Acompanhe as discussões e registre as estratégias utilizadas por cada grupo.
3ª etapa 
Discuta as soluções com toda a sala para que os estudantes tenham a oportunidade de defender e comparar seus pontos de vista. Note que vão se apoiar nos conhecimentos que já têm sobre o assunto, baseando-se em regras ou usando o campo multiplicativo, por exemplo. Estratégias como "para alcançar o 7, posso calcular 2 x 4 - 1 = 7 ou 2 x 6 - 1 = 11 etc.".
4ª etapa
Na tentativa de solucionar o desafio, os alunos devem perceber que a ampliação dos lados utilizando a adição de 3 centímetros na figura não respeita a mesma proporção e que isso ocorre na multiplicação. Ao utilizarem cálculos semelhantes aos da etapa anterior, é provável que se aproximem da resposta, mas ainda não encontrem o resultado correto. Nesse momento, levante o conhecimento sobre a razão (a razão de uma proporcionalidade direta é encontrada dividindo uma grandeza pela outra). Com essa informação, peça que os estudantes calculem a razão para que a ampliação do quebra-cabeça seja correta (7 ÷ 4 = 1,75). Assim, vão utilizar esse dado para encontrar as demais medidas (6 x 1,75 = 10,5 ou 5 x 1,75 = 8,75 e assim sucessivamente) até que o novo quadrado seja montado.
Avaliação

Observe o desempenho dos alunos ao longo do trabalho, pois, para controlar o aumento das peças de maneira que elas se encaixem, será preciso compreender a importância da constante e do modelo de proporcionalidade propostos. Observe as estratégias e debata-as com a turma. Assim, se um aluno não compreendeu como se dá a proporcionalidade entre as grandezas apresentadas no problema, a conversa em grupo poderá auxiliá-lo.

Flexibilização 

Para trabalhar com alunos com deficiência intelectual vale investir em questões facilmente perceptíveis por ele nas situações do cotidiano. O uso de materiais concretos e da calculadora auxiliam sempre. Elaborar problemas utilizando desenhos e recortes é muito positivo, pois dessa forma se está mexendo com frações nas proporções. Mostre, inicialmente, quando duas frações representam a mesma quantidade, utilizando barras de chocolate ou uma pizza, por exemplo. Todo registro e anotações das atividades são importantes para organização do pensamento do aluno com deficiência intelectual. Será que se eu comprar uma barra de chocolate e dividir em duas partes iguais e der uma parte para o meu amigo e dividir outro chocolate em quatro partes e der duas para o meu amigo ele receberá a mesma quantidade? Com isso você começa a explorar o conceito de equivalência. E então é possível começar a explorar a utilização das letras nas frações, utilizando a propriedade fundamental numa proporção. Trabalhar a multiplicação cruzada e perguntar qual é o número que multiplicado por 10 vai resultar 30 (podemos fazer a tabuada do 3 e utilizar a calculadora). A seguir, ajude o aluno a substituir no lugar do x o número encontrado e trabalhe novamente com desenhos, caso seja necessário. Faça com que o aluno pratique mais exercícios semelhantes no contraturno, com ajuda do Atendimento Educacional Especializado e amplie o tempo de realização das atividades para o aluno com deficiência intelectual.
Deficiências 
Intelectual

Fonte: http://www.gentequeeduca.org.br/planos-de-aula/quebra-cabeca-da-proporcionalidade